login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192456 Numerators in triangle that leads to the Bernoulli numbers 5
1, 1, 1, -1, 1, -1, 1, -2, 2, 1, -5, 1, 1, -1, 3, -8, 1, -7, 14, -4, 1, -4, 4, -64, 8, 1, -3, 9, -8, 12, 1, -5, 7, -40, 20, -32, 1, -11, 44, -44, 44, -16, 1, -2, 18, -64, 4, -192, 6112 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

For the denominators and detailed information see A191302.

LINKS

Table of n, a(n) for n=0..48.

MAPLE

nmax:=14: mmax:=nmax: A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end: A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end: for m from 0 to 2*mmax do T(0, m):=A164555(m)/A027642(m) od: for n from 1 to nmax do for m from 0 to 2*mmax do T(n, m):=T(n-1, m+1)-T(n-1, m) od: od: seq(T(n, n+1), n=0..nmax): for n from 0 to nmax do ASPEC(n, 0):=2: for m from 1 to mmax do ASPEC(n, m):= (2*n+m)*binomial(n+m-1, m-1)/m od: od: for n from 0 to nmax do seq(ASPEC(n, m), m=0..mmax) od: for n from 0 to nmax do for m from 0 to 2*mmax do SBD(n, m):=0 od: od: for m from 0 to mmax do for n from 2*m to nmax do SBD(n, m):= T(m, m+1) od: od: for n from 0 to nmax do seq(SBD(n, m), m= 0..mmax/2) od: for n from 0 to nmax do BSPEC(n, 2) := SBD(n, 2)*ASPEC(2, n-4) od: for m from 0 to mmax do for n from 0 to nmax do BSPEC(n, m) := SBD(n, m)*ASPEC(m, n-2*m) od: od: for n from 0 to nmax do seq(BSPEC(n, m), m=0..mmax/2) od: seq(add(BSPEC(n, k), k=0..floor(n/2)) , n=0..nmax): Tx:=0: for n from 0 to nmax do for m from 0 to floor(n/2) do a(Tx):= numer(BSPEC(n, m)): Tx:=Tx+1: od: od: seq(a(n), n=0..Tx-1); [Johannes W. Meijer, Jul 02 2011]

MATHEMATICA

(* a=ASPEC, b=BSPEC *) nmax = 13; a[n_, 0] = 2; a[n_, m_] := (2n+m)*Binomial[n+m-1, m-1]/m; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, nmax}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; dd = Diagonal[diff]; sbd[n_, m_] := If[n >= 2m, -dd[[m+1]], 0]; b[n_, m_] := sbd[n, m]*a[m, n-2m]; Table[b[n, m], {n, 0, nmax}, {m, 0, Floor[n/2]}] // Flatten // Numerator (* Jean-Fran├žois Alcover_, Aug 09 2012 *)

CROSSREFS

Cf. A191302 (denominators)

Sequence in context: A086873 A101560 A218529 * A226948 A010243 A203953

Adjacent sequences:  A192453 A192454 A192455 * A192457 A192458 A192459

KEYWORD

sign,frac,tabf

AUTHOR

Paul Curtz, Jul 01 2011

EXTENSIONS

Edited and Maple program added by Johannes W. Meijer, Jul 02 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 05:03 EST 2016. Contains 279034 sequences.