This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192449 Numerator of h(n+7) - h(n), where h(n) = Sum_{k=1..n} 1/k. 1
 363, 481, 3349, 2761, 25961, 22727, 263111, 237371, 21635, 8837, 695089, 529331, 9407549, 679829, 641069, 6671911, 36404897, 4075097, 2159257, 1312139, 36516143, 35036093, 88771727, 3715069 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n) = numerator(7*n^6 + 168*n^5 + 1610*n^4 + 7840*n^3 + 2037*n^2 + 26264*n + 13068)/((n+1)*n+2)*...*(n+7)); (7*n^6 + 168*n^5 + 1610*n^4 + 7840*n^3 + 2037*n^2 + 26264*n + 13068)/a(n) can be factored into 2^m(n)*3^p(n)*5^(q1(n) + q2(n)) where m(n) is of period 4, repeating [2,4,3,4] p(n) is of period 9, repeating [2,2,2,1,1,2,1,1,2] q1(n) is of period 5, repeating [0,0,0,1,1] q2(n) is of period 25, repeating [0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] LINKS FORMULA a(n) = (7*n^6 + 168*n^5 + 1610*n^4 + 7840*n^3 + 2037*n^2 + 26264*n + 13068)/ (2^m(n)*3^p(n)*5^(q(n)) where   m(n) = P(1,4,3,n) + 2*P(0,2,1,n) + 2,   p(n) = P(0,3,2,n) + P(7,9,7,n) + 1,   q(n) = P(0,5,3,n) + P(15,15,23,n),   P(x,y,z,n) = floor(((n+x) mod y)/z). MAPLE h:= n-> sum(1/k, k=1..n):seq(numer(h(n+7)-h(n)), n=0..23); P:=(x, y, z, n)-> floor(((n+x) mod y)/z): m:=n-> P(1, 4, 3, n)+2*P(0, 2, 1, n)+2: p:=n-> P(0, 3, 2, n)+P(7, 9, 7, n)+1: q:=n-> P(0, 5, 3, n)+P(15, 15, 23, n): N7:=n->(7*n^6+168*n^5+1610*n^4+7840*n^3+2037*n^2+26264*n+13068): seq(N7(n)/(2^m(n)*3^p(n)*5^q(n)), n=0..23); # Alternative implementation, R. J. Mathar, Jul 12 2011: A192449 := proc(n) add(1/i, i=n+1..n+7) ; numer(%) ; end proc: CROSSREFS Cf. A188386, A189642, A189998, A192359. Sequence in context: A007565 A098253 A031517 * A116285 A031697 A158309 Adjacent sequences:  A192446 A192447 A192448 * A192450 A192451 A192452 KEYWORD nonn AUTHOR Gary Detlefs, Jul 01 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 22:22 EDT 2019. Contains 322310 sequences. (Running on oeis4.)