This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192434 Smallest prime p such that there is a gap of exactly n! between p and the next prime. 0
 2, 2, 3, 23, 1669, 1895359, 111113196467011 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(7) > 1.5 * 10^18. - Charles R Greathouse IV, Jun 30 2011 a(7) <= 5321252506668526413269161812412779312234715413010708809313699883082142158368298199 (see the Nicely page). - Abhiram R Devesh, Aug 09 2014 LINKS Thomas R. Nicely, First occurrence prime gaps FORMULA a(n) = A000230(n!/2) for n > 1. - Charles R Greathouse IV, Jun 30 2011 EXAMPLE a(4) = 1669 because the next prime after 1669 is 1693 and 1693 - 1669 = 24 = 4! MAPLE with(numtheory):for n from 0 to 10 do:id:=0:for k from 1 to 2000000 while(id=0) do:p1:=ithprime(k):p2:=ithprime(k+1):if p2-p1 = n! then id:=1: printf(`%d, `, p1): else fi:od:od: MATHEMATICA f[n_] := Block[{k = 1}, While[Prime[k + 1] != n + Prime[k], k++ ]; Prime[k]]; Do[ Print[ f[n!]], {n, 0, 10}] PROG (PARI) a(n)=my(p=2); n=n!; forprime(q=3, default(primelimit), if(q-p==n, return(p)); p=q) \\ Charles R Greathouse IV, Jun 30 2011 (Python) import sympy n=0 while n>=0: ....p=2 ....while  sympy.nextprime(p)-p!=(sympy.factorial(n)): ........p=sympy.nextprime(p) ....print(p) ....n=n+1 ....p=sympy.nextprime(p) ## Abhiram R Devesh, Aug 09 2014 CROSSREFS Sequence in context: A087768 A113604 A084745 * A189254 A036503 A109590 Adjacent sequences:  A192431 A192432 A192433 * A192435 A192436 A192437 KEYWORD nonn,hard AUTHOR Michel Lagneau, Jun 30 2011 EXTENSIONS a(6) from Charles R Greathouse IV, Jun 30 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 19:25 EDT 2019. Contains 328308 sequences. (Running on oeis4.)