%I #20 Jan 13 2024 04:55:41
%S 1,2,2,3,5,6,8,11,13,17,22,27,34,42,51,62,76,91,109,132,156,186,221,
%T 259,306,360,420,490,572,663,769,892,1027,1184,1364,1564,1793,2053,
%U 2343,2674,3048,3464,3935,4465,5056,5721,6468,7297,8227,9269,10423
%N Coefficients of a mock theta function.
%C Essentially the unified WRT invariant of the Seifert manifold M(2,3,8)
%H Vaclav Kotesovec, <a href="/A192432/b192432.txt">Table of n, a(n) for n = 0..10000</a>
%H K. Bringmann, K. Hikami and J. Lovejoy, <a href="https://lovejoy.perso.math.cnrs.fr/WRTmock5.pdf">On the modularity of the unified WRT invariants of certain Seifert manifolds</a>
%H K. Bringmann, K. Hikami, and J. Lovejoy, <a href="https://doi.org/10.1016/j.aam.2009.12.004">On the modularity of the unified WRT invariants of certain Seifert manifolds</a>, Adv. Appl. Math. 46 (2011), 86-93.
%F a(n) ~ exp(Pi*sqrt(n/3)) / (4*sqrt(2*n)). - _Vaclav Kotesovec_, Jun 12 2019
%o (PARI) N=66; q='q+O('q^N); gf=sum(n=0,N,q^n*prod(k=1,2*n+1,1+q^k)); Vec(gf) \\ _Joerg Arndt_, Jul 01 2011
%Y a(n) equals A053251(2n+2).
%K nonn
%O 0,2
%A _Jeremy Lovejoy_, Jun 30 2011