OFFSET
0,4
COMMENTS
Related q-series identity:
Sum_{n>=1} z^n*y*q^n/(1-y*q^(2*n)) = Sum_{n>=1} y^n*z*q^(2*n-1)/(1-z*q^(2*n-1)); here q=A(x), y=x, z=x.
FORMULA
G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^(n+1)*A(x)^(2*n-1)/(1 - x*A(x)^(2*n-1)).
G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^(n+1)*A(x)^(n*(n+1)/2) * Sum_{k=0..n-1} A(x)^(-k*(k+1)/2).
Equals the antidiagonal sums of square array A192404.
EXAMPLE
G.f.: A(x) = 1 + x^2 + 2*x^3 + 4*x^4 + 11*x^5 + 33*x^6 + 99*x^7 +...
which satisfies the following relations:
A(x) = 1 + x^2*A(x)/(1-x*A(x)^2) + x^3*A(x)^2/(1-x*A(x)^4) + x^4*A(x)^3/(1-x*A(x)^6) +...
A(x) = 1 + x^2*A(x)/(1-x*A(x)) + x^3*A(x)^3/(1-x*A(x)^3) + x^4*A(x)^5/(1-x*A(x)^5) +...
A(x) = 1 + x^2*A(x) + x^3*A(x)^3*(1 + 1/A(x)) + x^4*A(x)^6*(1 + 1/A(x) + 1/A(x)^3) + x^5*A(x)^10*(1 + 1/A(x) + 1/A(x)^3 + 1/A(x)^6) +...
PROG
(PARI) {a(n)=local(A=1+x^2); for(i=1, n, A=1+x*sum(m=1, n, x^m*A^m/(1-x*A^(2*m)+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x^2); for(i=1, n, A=1+x*sum(m=1, n, x^m*A^(2*m-1)/(1-x*A^(2*m-1)+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^(m+1)*A^(m*(m+1)/2)*sum(k=0, m-1, (A+x*O(x^n))^(-k*(k+1)/2) ) ) ); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 30 2011
STATUS
approved