This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192340 Constant term of the reduction of n-th polynomial at A158985 by x^2->x+1. 2
 1, 3, 19, 1091, 4270307, 65975813893475, 15748607358316275150858234851, 897339846665475127909937786392825941994036757434025817827, 2913308988276889310145046342161059349226587591969604604068795694857825566722967409631885309325418272374141705507555 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. LINKS EXAMPLE The first three polynomials at A158985 and their reductions are as follows: p0(x)=1+x -> 1+x p1(x)=2+2x+x^2 -> 3+3x p2(x)=5+8x+8x^2+4x^3+x^4 -> 19+27x. From these, we read A192340=(1,3,19,...) and A192341=(1,3,27,...) MATHEMATICA q[x_] := x + 1; p[0, x_] := x + 1; p[n_, x_] := 1 + p[n - 1, x]^2 /; n > 0  (* polynomials defined at A158985 *) Table[Expand[p[n, x]], {n, 0, 4}] reductionRules = {x^y_?EvenQ -> q[x]^(y/2),  x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 9}] Table[Coefficient[Part[t, n], x, 0], {n, 1, 9}] (* A192340 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 9}] (* A192341 *) CROSSREFS Cf. A192232, A192341. Sequence in context: A014015 A114301 A258669 * A248704 A098796 A120563 Adjacent sequences:  A192337 A192338 A192339 * A192341 A192342 A192343 KEYWORD nonn AUTHOR Clark Kimberling, Jun 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 16 04:26 EDT 2019. Contains 325064 sequences. (Running on oeis4.)