login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192307 0-sequence of reduction of (3n) by x^2 -> x+1. 2
3, 3, 12, 24, 54, 108, 213, 405, 756, 1386, 2508, 4488, 7959, 14007, 24492, 42588, 73698, 126996, 218025, 373065, 636468, 1082958, 1838232, 3113424, 5262699, 8879403, 14956428, 25153440, 42241806, 70844796 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".

LINKS

Table of n, a(n) for n=1..30.

FORMULA

a(n) = 3*A190062(n).

G.f.: 3*x*(1-2*x+2*x^2)/(1-x)/(1-x-x^2)^2. [Colin Barker, Feb 11 2012]

MATHEMATICA

c[n_] := 3 n; (*  *)

Table[c[n], {n, 1, 15}]

q[x_] := x + 1;

p[0, x_] := 3; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1]

reductionRules = {x^y_?EvenQ -> q[x]^(y/2),

   x^y_?OddQ -> x q[x]^((y - 1)/2)};

t = Table[

  Last[Most[

    FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,

   30}]

Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]  (* A192307 *)

Table[Coefficient[Part[t, n]/3, x, 0], {n, 1, 30}]  (* A190062 *)

Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]  (* A192308 *)

Table[Coefficient[Part[t, n]/3, x, 1], {n, 1, 30}]  (* A122491 *)

(* by Peter J. C. Moses, Jun 20 2011 *)

CROSSREFS

Cf. A192232, A192307.

Sequence in context: A268798 A136533 A268639 * A161804 A097342 A025236

Adjacent sequences:  A192304 A192305 A192306 * A192308 A192309 A192310

KEYWORD

nonn,easy,changed

AUTHOR

Clark Kimberling, Jun 27 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 09:29 EST 2016. Contains 278849 sequences.