login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192293 Let sigma*_m (n) be the result of applying the sum of anti-divisors m times to n; call n (m,k)-anti-perfect if sigma*_m (n) = k*n; this sequence gives the (2,3)-anti-perfect numbers. 6
32, 98, 2524, 199282, 1336968 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Like A019281 but using anti-divisors.

a(6) > 2*10^7. - Chai Wah Wu, Dec 02 2014

LINKS

Table of n, a(n) for n=1..5.

EXAMPLE

sigma*(32)= 3+5+7+9+13+21=58; sigma*(58)= 3+4+5+9+13+23+39=96 and 3*32=96.

sigma*(98)= 3+4+5+13+15+28+39+65=172; sigma*(172)= 3+5+7+8+15+23+49+69+115=294 and 3*98=294.

sigma*(2524)= 3+7+8+9+11+17+27+33+49+51+99+103+153+187+297+459+561+721+1683=4478; sigma*(4478)= 3+4+5+9+13+15+45+53+169+199+597+689+995+1791+2985=7572 and 3*2524=7572.

MAPLE

with(numtheory): P:= proc(n) local i, j, k, s, s1; for i from 3 to n do

k:=0; j:=i; while j mod 2 <> 1 do k:=k+1; j:=j/2; od; s:=sigma(2*i+1)+sigma(2*i-1)+sigma(i/2^k)*2^(k+1)-6*i-2;

k:=0; j:=s; while j mod 2 <> 1 do k:=k+1; j:=j/2; od; s1:=sigma(2*s+1)+sigma(2*s-1)+sigma(s/2^k)*2^(k+1)-6*s-2;

if s1/i=3 then print(i); fi; od; end: P(10^9);

PROG

(Python)

from sympy import divisors

def antidivisors(n):

....return [2*d for d in divisors(n) if n > 2*d and n % (2*d)] + \

...........[d for d in divisors(2*n-1) if n > d >=2 and n % d] + \

...........[d for d in divisors(2*n+1) if n > d >=2 and n % d]

A192293_list = []

for n in range(1, 10**4):

....if 3*n == sum(antidivisors(sum(antidivisors(n)))):

........A192293_list.append(n) # Chai Wah Wu, Dec 02 2014

CROSSREFS

Cf. A019281, A066272, A192290, A192291, A192292.

Sequence in context: A197904 A273554 A218901 * A188862 A228686 A172517

Adjacent sequences:  A192290 A192291 A192292 * A192294 A192295 A192296

KEYWORD

nonn,more,less

AUTHOR

Paolo P. Lava, Jun 29 2011

EXTENSIONS

a(4)-a(5) from Chai Wah Wu, Dec 01 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 05:25 EST 2017. Contains 294853 sequences.