This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192285 Primitive pseudo anti-perfect numbers 0
 5, 7, 8, 17, 22, 23, 31, 33, 38, 39, 41, 52, 53, 59, 67, 71, 73, 74, 81, 83, 94, 101, 103, 108, 109, 116, 122, 127, 129, 137, 143, 149, 151, 157, 158, 167, 171, 172, 178, 179, 193, 199, 214, 237, 241, 247, 257, 262, 263, 269, 283, 293, 311, 313, 319, 331, 333 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A primitive pseudo anti-perfect number is a pseudo anti-perfect number that is not a multiple of any other pseudo anti-perfect number. Like A006036 but using anti-divisors. Subset of A192270. LINKS MAPLE with(combinat); P:=proc(i) local a, j, k, n, ok, S, v; v:=array(1..10000); j:=0; for n from 1 to i do   a:={};   for k from 2 to n-1 do     if abs((n mod k)- k/2) < 1 then a:=a union {k}; fi;   od;   S:=subsets(a);   while not S[finished] do     if convert(S[nextvalue](), `+`)=n then        if j=0 then j:=1; v[1]:=n; print(n); break;        else           ok:=1;           for k from 1 to j do               if trunc(n/v[k])=n/v[k] then ok:=0; break; fi;           od;           j:=j+1; v[j]:=n; if ok=1 then print(n); fi;        fi;     fi;   od; od; end: CROSSREFS Cf. A006036, A066272, A192270 Sequence in context: A140237 A032683 A182005 * A192123 A104423 A011347 Adjacent sequences:  A192282 A192283 A192284 * A192286 A192287 A192288 KEYWORD nonn AUTHOR Paolo P. Lava, Jul 20 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.