

A192271


Antiweird numbers.


0



11, 12, 13, 14, 15, 18, 20, 21, 25, 27, 28, 30, 37, 40, 42, 43, 46, 47, 48, 50, 55, 57, 58, 62, 65, 66, 75, 78, 80, 84, 86, 87, 90, 91, 92, 93, 97, 99, 100, 107, 111, 113, 118, 119, 120, 121, 124, 125, 126, 128, 132, 133, 135, 136, 140, 142, 145, 152, 153, 155, 160, 161, 163, 168, 170, 173, 177, 180, 181, 183, 184, 186, 188, 190, 192, 196, 197, 198, 204, 205, 208, 210, 212, 213, 218, 222, 223
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Like A006037 but using antidivisors: Antiweird numbers are antiabundant (A192268) but not pseudo antiperfect (A192270).


LINKS

Table of n, a(n) for n=1..87.


EXAMPLE

25 is an antiweird number because it is antiabundant (its antidivisors are 2, 3, 7, 10, 17 and their sum is 39 > 25) and no subsets of its antidivisors add up to 25.


MAPLE

# see A066272
isA192270 := proc(n) local a, S ; a := antidivisors(n) ; S := combinat[subsets](a) ; while not S[finished] do if convert(S[nextvalue](), `+`) = n then return true; end if; end do; false ; end proc:
isA192268 := proc(n) A066417(n) > n ; end proc:
isA192271 := proc(n) isA192268(n) and not isA192270(n) ; end proc:
for n from 1 to 40 do if isA192271(n) then printf("%d, ", n) ; end if; end do: # R. J. Mathar, Jul 04 2011


CROSSREFS

Cf. A006037, A066272, A192268, A192270.
Sequence in context: A296710 A297143 A138595 * A214423 A185300 A097932
Adjacent sequences: A192268 A192269 A192270 * A192272 A192273 A192274


KEYWORD

nonn


AUTHOR

Paolo P. Lava, Jun 28 2011


STATUS

approved



