The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192246 0-sequence of reduction of tetrahedral number sequence by x^2 -> x+1. 2
 1, 1, 11, 31, 101, 269, 689, 1649, 3794, 8414, 18138, 38158, 78653, 159293, 317733, 625365, 1216455, 2341635, 4465645, 8445005, 15849556, 29541916, 54717716, 100766316, 184588041, 336489609, 610630959, 1103486539, 1986385449, 3562728009 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]". LINKS FORMULA Empirical G.f.: x*(1-4*x+12*x^2-12*x^3+5*x^4)/(1-x)/(1-x-x^2)^4. [Colin Barker, Feb 10 2012] MATHEMATICA c[n_] := n (n + 1) (n + 2)/6;  (* tetrahedral numbers, A000292 *) Table[c[n], {n, 1, 15}] q[x_] := x + 1; p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1] reductionRules = {x^y_?EvenQ -> q[x]^(y/2),    x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[   Last[Most[     FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,    30}] Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]  (* A192246 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]  (* A192247 *) (* by Peter J. C. Moses, Jun 26 2011 *) CROSSREFS Cf. A192232, A192247. Sequence in context: A027847 A068841 A316982 * A124296 A223388 A152220 Adjacent sequences:  A192243 A192244 A192245 * A192247 A192248 A192249 KEYWORD nonn AUTHOR Clark Kimberling, Jun 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 7 10:56 EDT 2020. Contains 333301 sequences. (Running on oeis4.)