The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192235 Constant term of the reduction of the n-th 2nd-kind Chebyshev polynomial by x^2 -> x+1. 5
 0, 3, 8, 21, 64, 183, 528, 1529, 4416, 12763, 36888, 106605, 308096, 890415, 2573344, 7437105, 21493632, 62117747, 179523624, 518832901, 1499454912, 4333505127, 12524062256, 36195211689, 104606103232, 302317249227, 873713066040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A192232. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (2,2,2,-1). FORMULA Empirical G.f.: x^2*(3-x)*(1+x)/(1-2*x-2*x^2-2*x^3+x^4). - Colin Barker, Sep 11 2012 MATHEMATICA q[x_]:= x + 1; reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, ChebyshevU[n, x]]]], {n, 1, 40}]; Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192235 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A192236 *) Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 40}] (* A192237 *) (* by Peter J. C. Moses, Jun 25 2011 *) LinearRecurrence[{2, 2, 2, -1}, {0, 3, 8, 21}, 40] (* G. C. Greubel, Jul 30 2019 *) PROG (PARI) a(n)=my(t=polchebyshev(n, 2)); while(poldegree(t)>1, t=substpol(t, x^2, x+1)); subst(t, x, 0) \\ Charles R Greathouse IV, Feb 09 2012 (PARI) m=40; v=concat([0, 3, 8, 21], vector(m-4)); for(n=5, m, v[n] = 2*v[n-1]+2*v[n-2]+2*v[n-3]-v[n-4]); v \\ G. C. Greubel, Jul 30 2019 (MAGMA) I:=[0, 3, 8, 21]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) +2*Self(n-3) -Self(n-4): n in [1..40]]; // G. C. Greubel, Jul 30 2019 (Sage) @cached_function def a(n):     if (n==0): return 0     elif (1 <= n <= 3): return fibonacci(2*n+2)     else: return 2*(a(n-1) + a(n-2) + a(n-3)) - a(n-4) [a(n) for n in (0..40)] # G. C. Greubel, Jul 30 2019 (GAP) a:=[0, 3, 8, 21];; for n in [5..40] do a[n]:=2*a[n-1]+2*a[n-2]+ 2*a[n-3]-a[n-4]; od; a; # G. C. Greubel, Jul 30 2019 CROSSREFS Cf. A192232, A192236, A192237. Sequence in context: A018037 A018038 A000737 * A148769 A156291 A111136 Adjacent sequences:  A192232 A192233 A192234 * A192236 A192237 A192238 KEYWORD nonn AUTHOR Clark Kimberling, Jun 26 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 12:19 EST 2020. Contains 338720 sequences. (Running on oeis4.)