login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192235 Constant term of the reduction of the n-th 2nd-kind Chebyshev polynomial by x^2->x+1. 5
0, 3, 8, 21, 64, 183, 528, 1529, 4416, 12763, 36888, 106605, 308096, 890415, 2573344, 7437105, 21493632, 62117747, 179523624, 518832901, 1499454912, 4333505127, 12524062256, 36195211689, 104606103232, 302317249227, 873713066040 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A192232.

LINKS

Table of n, a(n) for n=1..27.

FORMULA

Empirical G.f.: x^2*(3-x)*(1+x)/(1-2*x-2*x^2-2*x^3+x^4). [Colin Barker, Sep 11 2012]

MATHEMATICA

q[x_] := x + 1;

reductionRules = {x^y_?EvenQ -> q[x]^(y/2),

   x^y_?OddQ -> x q[x]^((y - 1)/2)};

t = Table[

   Last[Most[

     FixedPointList[Expand[#1 /. reductionRules] &,

      ChebyshevU[n, x]]]], {n, 1, 40}];

Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}]  (* A192235 *)

Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}]  (* A192236 *)

Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 40}]  (* A192237 *)

(* by Peter J. C. Moses, Jun 25 2011 *)

PROG

(PARI) a(n)=my(t=polchebyshev(n, 2)); while(poldegree(t)>1, t=substpol(t, x^2, x+1)); subst(t, x, 0) \\ Charles R Greathouse IV, Feb 09 2012

CROSSREFS

Cf. A192232, A192236, A192237.

Sequence in context: A018037 A018038 A000737 * A148769 A156291 A111136

Adjacent sequences:  A192232 A192233 A192234 * A192236 A192237 A192238

KEYWORD

nonn

AUTHOR

Clark Kimberling, Jun 26 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 11:44 EDT 2019. Contains 325254 sequences. (Running on oeis4.)