login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192235 Constant term of the reduction of the n-th 2nd-kind Chebyshev polynomial by x^2 -> x+1. 5
0, 3, 8, 21, 64, 183, 528, 1529, 4416, 12763, 36888, 106605, 308096, 890415, 2573344, 7437105, 21493632, 62117747, 179523624, 518832901, 1499454912, 4333505127, 12524062256, 36195211689, 104606103232, 302317249227, 873713066040 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A192232.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (2,2,2,-1).

FORMULA

Empirical G.f.: x^2*(3-x)*(1+x)/(1-2*x-2*x^2-2*x^3+x^4). - Colin Barker, Sep 11 2012

MATHEMATICA

q[x_]:= x + 1;

reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};

t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, ChebyshevU[n, x]]]], {n, 1, 40}];

Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192235 *)

Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A192236 *)

Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 40}] (* A192237 *)

(* by Peter J. C. Moses, Jun 25 2011 *)

LinearRecurrence[{2, 2, 2, -1}, {0, 3, 8, 21}, 40] (* G. C. Greubel, Jul 30 2019 *)

PROG

(PARI) a(n)=my(t=polchebyshev(n, 2)); while(poldegree(t)>1, t=substpol(t, x^2, x+1)); subst(t, x, 0) \\ Charles R Greathouse IV, Feb 09 2012

(PARI) m=40; v=concat([0, 3, 8, 21], vector(m-4)); for(n=5, m, v[n] = 2*v[n-1]+2*v[n-2]+2*v[n-3]-v[n-4]); v \\ G. C. Greubel, Jul 30 2019

(MAGMA) I:=[0, 3, 8, 21]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) +2*Self(n-3) -Self(n-4): n in [1..40]]; // G. C. Greubel, Jul 30 2019

(Sage)

@cached_function

def a(n):

    if (n==0): return 0

    elif (1 <= n <= 3): return fibonacci(2*n+2)

    else: return 2*(a(n-1) + a(n-2) + a(n-3)) - a(n-4)

[a(n) for n in (0..40)] # G. C. Greubel, Jul 30 2019

(GAP) a:=[0, 3, 8, 21];; for n in [5..40] do a[n]:=2*a[n-1]+2*a[n-2]+ 2*a[n-3]-a[n-4]; od; a; # G. C. Greubel, Jul 30 2019

CROSSREFS

Cf. A192232, A192236, A192237.

Sequence in context: A018037 A018038 A000737 * A148769 A156291 A111136

Adjacent sequences:  A192232 A192233 A192234 * A192236 A192237 A192238

KEYWORD

nonn

AUTHOR

Clark Kimberling, Jun 26 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 12:19 EST 2020. Contains 338720 sequences. (Running on oeis4.)