The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192234 a(n) = 2*(a(n-1) + a(n-2) + a(n-3)) - a(n-4) for n >= 4, with initial terms 0,1,0,1. 5
 0, 1, 0, 1, 4, 9, 28, 81, 232, 673, 1944, 5617, 16236, 46921, 135604, 391905, 1132624, 3273345, 9460144, 27340321, 79014996, 228357577, 659965644, 1907336113, 5512303672, 15930853281, 46041020488, 133061018769, 384553481404, 1111380188041 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS With a different offset, constant term of the reduction of the n-th 1st-kind Chebyshev polynomial by x^2->x+1. See A192232. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 H. S. M. Coxeter, Loxodromic sequences of tangent spheres, Aequationes Mathematicae, 1.1-2 (1968): 104-121. See p. 112. Index entries for linear recurrences with constant coefficients, signature (2,2,2,-1). FORMULA G.f.: x*(1 - 2*x - x^2) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Feb 09 2012 and Sep 09 2018 MATHEMATICA q[x_]:= x + 1; reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, ChebyshevT[n, x]]]], {n, 1, 40}]; Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}]  (* A192234 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}]  (* A071101 *) (* Peter J. C. Moses, Jun 25 2011 *) PROG (PARI) a(n)=my(t=polchebyshev(n)); while(poldegree(t)>1, t=substpol(t, x^2, x+1)); subst(t, x, 0) \\ Charles R Greathouse IV, Feb 09 2012 (PARI) concat(0, Vec(x*(1-2*x-x^2)/(1-2*x-2*x^2-2*x^3+x^4) + O(x^40))) \\ Colin Barker, Sep 09 2018 (MAGMA) R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1-2*x-x^2)/(1-2*x-2*x^2-2*x^3+x^4) )); // G. C. Greubel, Jul 29 2019 (Sage) (x*(1-2*x-x^2)/(1-2*x-2*x^2-2*x^3+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 29 2019 (GAP) a:=[0, 1, 0, 1];; for n in [5..40] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jul 29 2019 CROSSREFS Cf. A192232. Sequence in context: A000368 A232765 A094255 * A069563 A276984 A210969 Adjacent sequences:  A192231 A192232 A192233 * A192235 A192236 A192237 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jun 26 2011 EXTENSIONS Entry revised (with new offset and initial terms) by N. J. A. Sloane, Sep 03 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 04:35 EST 2020. Contains 331183 sequences. (Running on oeis4.)