OFFSET
1,1
COMMENTS
Sum of three consecutive numbers with exponent 6, the difference with 666 generate prime number of the form 3n^6 +36n^5 +210n^4 +720n^3 +1470n^2 +1656n +128.
EXAMPLE
425783 = 6^6+7^6+8^6-666 and 744158711 = 24^6+25^6+26^6-666 are in the sequence.
MATHEMATICA
lst={}; Do[If[PrimeQ[p=(n+1)^6+(n+2)^6+(n+3)^6-666], AppendTo[lst, p]], {n, 200}]; lst
Select[Total/@(Partition[Range[200], 3, 1]^6)-666, PrimeQ] (* Harvey P. Dale, Dec 14 2011 *)
PROG
(PARI) for(n=1, 1e3, if(isprime(k=(n+1)^6+(n+2)^6+(n+3)^6-666), print1(k", "))) \\ Charles R Greathouse IV, Jul 01 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Rafael Parra Machio, Jun 26 2011
STATUS
approved