login
Molecular topological indices of the cube-connected cycle graphs.
2

%I #31 May 26 2017 18:25:36

%S 12,288,5544,57408,458400,3339648,21641088,133367808,770867712,

%T 4318341120,23246936064,122502168576,628395515904,3173912641536,

%U 15723815731200,76986895564800,371499757338624,1776217326354432,8396759769808896,39400619366154240

%N Molecular topological indices of the cube-connected cycle graphs.

%C The cube-connected cycle graph of order n is a cubic vertex transitive graph with n*2^n vertices. The number of nodes at distance k from a designated node is given by A286756(n,k). - _Andrew Howroyd_, May 13 2017

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Cube-ConnectedCycleGraph.html">Cube-Connected Cycle Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MolecularTopologicalIndex.html">Molecular Topological Index</a>

%F a(n) = 3n * 2^n * (3 + Sum_{k=1..floor(5n/2)-1} k*A286756(n,k)). - _Andrew Howroyd_, May 13 2017

%e Case n=3:

%e The cube-connected graph cycle graph of order 3 is a vertex transitive graph of degree 3 with 3*2^3=24 vertices. The number of nodes which are at distances 1..6 from a designated starting node are 3,4,6,6,3,1. The molecular topological index for the graph is then 24*3*3 + 24*3*(1*3 + 2*4 + 3*6 + 4*6 + 5*3 + 6*1) = 5544.

%Y Cf. A286756.

%K nonn

%O 1,1

%A _Eric W. Weisstein_, Jul 11 2011

%E a(9)-a(20) from _Andrew Howroyd_, May 12 2017