%I #12 Oct 12 2017 10:52:56
%S 0,2,3,53,5,1,2,1,1,1,1,91,7,1,1,5,2,1,1,1,2,1,2,5,1,2,23,1,2,6,1,30,
%T 6,1,1,1,23,2,1,14,1,1,1,1,2,1,9,3,34,2,1,176,1,114,1,27,20,2,63,36,2,
%U 6,1,7,1,1,26,8,1,1,1,1,2,1,4,15,12,1,1
%N Continued fraction expansion of the middle real root of x^7-7x+3.
%C I consider the 1 after the 91 a typo in the publication. - _R. J. Mathar_, Jun 27 2011
%H David G. Cantor, Paul H. Galyean and Horst G. Zimmer, <a href="http://dx.doi.org/10.1090/S0025-5718-1972-0330118-4">A continued fraction algorithm for real algebraic numbers</a>. Math. Comp. 26 (1972), 785-791.
%e 0.42895317162492626.. = 0+1/(2+1/(3+1/(53+...))).
%o (PARI) contfrac(solve(x=0, 1, x^7-7*x+3)) \\ _Michel Marcus_, Oct 12 2017
%Y Cf. A192181, A192183.
%K nonn,cofr
%O 0,2
%A _N. J. A. Sloane_, Jun 25 2011