The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192143 0-sequence of reduction of hexagonal numbers sequence by x^2 -> x+1. 2
 1, 1, 16, 44, 134, 332, 787, 1747, 3736, 7726, 15580, 30760, 59685, 114117, 215472, 402464, 744674, 1366484, 2489175, 4504695, 8104536, 14504226, 25833336, 45811344, 80916169, 142400137, 249760912, 436706132, 761385086, 1323910556 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]". LINKS FORMULA Empirical G.f.: x*(1-3*x+15*x^2-12*x^3+6*x^4)/(1-x)/(1-x-x^2)^3. [Colin Barker, Feb 11 2012] MATHEMATICA c[n_] := n (2 n - 1); (* hexagonal numbers, A000384 *) Table[c[n], {n, 1, 15}] q[x_] := x + 1; p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1] reductionRules = {x^y_?EvenQ -> q[x]^(y/2),    x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[   Last[Most[     FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,    30}] Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]  (* A192143 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]  (* A192144 *) (* by Peter J. C. Moses, Jun 20 2011 *) CROSSREFS Cf. A192232, A192144. Sequence in context: A211573 A211582 A204032 * A221593 A300962 A051868 Adjacent sequences:  A192140 A192141 A192142 * A192144 A192145 A192146 KEYWORD nonn AUTHOR Clark Kimberling, Jun 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 28 06:55 EST 2020. Contains 332321 sequences. (Running on oeis4.)