OFFSET
1,1
COMMENTS
f(x)=(r^x-r^(-x*cos[pi*x]))/sqrt(5), where r=(golden ratio)=(1+sqrt(5))/2. This function, a variant of the Binet formula, gives Fibonacci numbers for integer values of x; e.g., f(3)=2, f(4)=3, f(5)=5.
EXAMPLE
3.70822831961181544622795697604762903141444780151470467124724
MATHEMATICA
r = GoldenRatio; s = 1/Sqrt[5];
f[x_] := s (r^x - r^-x Cos[Pi x]);
x /. FindRoot[Fibonacci[x] == r+1, {x, 5}, WorkingPrecision -> 100]
RealDigits[%, 10]
(Show[Plot[#1, #2], ListPlot[Table[{x, #1}, #2]]] &)[
Fibonacci[x], {x, -7, 7}]
(* Peter J. C. Moses, Jun 21 2011 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Jun 21 2011
STATUS
approved