login
A192036
E.g.f. satisfies: A(x) = Sum_{n>=0} x^n*A(n*x)^n/n!.
1
1, 1, 3, 22, 317, 7976, 329167, 21511036, 2187830521, 343670351392, 83118756921371, 30891910810811084, 17606061819337679173, 15347380239670729742272, 20404520526924833144453623, 41254672227383167503175726876, 126484184787351358506375259745393
OFFSET
0,3
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 22*x^3/3! + 317*x^4/4! + 7976*x^5/5! +...
The e.g.f. satisfies:
A(x) = 1 + x*A(x) + x^2*A(2*x)^2/2! + x^3*A(3*x)^3/3! + x^4*A(4*x)^4/4! +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*subst(A, x, m*x+x*O(x^(n)))^m/m!)); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 21 2011
STATUS
approved