login
A192035
Numbers k with equal remainders of (product of divisors of k) mod (sum of divisors of k) and (product of proper divisors of k) mod (sum of proper divisors of k).
1
6, 14, 28, 51, 120, 260, 270, 496, 672, 679, 752, 924, 1260, 1320, 1540, 1960, 2055, 2262, 2651, 3808, 3948, 4381, 6413, 6435, 6944, 7900, 7980, 8010, 8128, 9809, 9945, 10242, 10920, 12690, 15456, 16830, 18018, 21728, 21970, 22320, 25296, 27930, 29190, 29792
OFFSET
1,1
COMMENTS
The even perfect numbers (A000396) are a subsequence.
The deficient numbers (A005100) in the sequence are 14, 51, 679, 752, 2055, 2651, 4381, 6413, 9809, 9945, 21970, ... - Juri-Stepan Gerasimov, Jul 07 2011
LINKS
FORMULA
{ k : A187680(k) = A191906(k) }.
EXAMPLE
14 is in this sequence because (1*2*7*14) mod (1+2+7+14) = 196 mod 24 = 4 and (1*2*7) mod (1+2+7) = 14 mod 10 = 4.
MATHEMATICA
erQ[n_]:=Module[{divs=Divisors[n], ds=DivisorSigma[1, n]}, Mod[ Times@@ divs, ds] == Mod[ Times@@Most[divs], ds-n]]; Select[Range[2, 30000], erQ] (* Harvey P. Dale, Jun 13 2015 *)
Select[Range[2, 30000], Mod[(p = #^(DivisorSigma[0, #]/2)), (s = DivisorSigma[1, #])] == Mod[p/#, s - #] &] (* Amiram Eldar, Jul 21 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Values from a(4) onwards from R. J. Mathar, Jul 05 2011
STATUS
approved