OFFSET
1,2
LINKS
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
FORMULA
If n even, then: W(n,m) = n*(n^2/4 + 2*m^2*n + m^2*n^2/4 + 2*m*n + m*n^2/2 - 2*m)/2;
if n odd, then: W(n,m) = n*(n^2 - 1 + m^2*n^2 + 8*m^2*n - m^2 + 2*m*n^2 + 8*m*n - 10*m)/8.
The Wiener polynomial P(n,m;t) of the graph G(n,m) is given in the 3rd Maple program. It gives, for example, P(4,9) = 162*t^4 + 360*t^3 + 218*t^2 + 40*t. Its derivative, evaluated at t=1, yields the corresponding Wiener index W(4,9)=4184.
EXAMPLE
a(3,1)=27 because in the graph with vertex set {A,B,C,A',B',C'} and edge set {AB, BC, CA, AA', BB', CC'} we have 6 pairs of vertices at distance 1 (the edges), 6 pairs at distance 2 (A'B, A'C, B'A, B'C, C'A, C'B) and 3 pairs at distance 3 (A'B', B'C', C'A'); 6*1 + 6*2 + 3*3 = 27.
The square array starts:
1, 4, 9, 16, 25, 36, 49, ...;
10, 29, 58, 97, 146, 205, 274, ...;
27, 75, 147, 243, 363, 507, 675, ...;
60, 160, 308, 504, 748, 1040, 1380, ...;
MAPLE
W := proc (n, m) if `mod`(n, 2) = 0 then (1/2)*n*((1/4)*n^2+2*m^2*n+(1/4)*m^2*n^2+2*m*n+(1/2)*m*n^2-2*m) else (1/8)*(n^2-1+m^2*n^2+8*m^2*n-m^2+2*m*n^2+8*m*n-10*m)*n end if end proc: for n to 10 do seq(W(n-i, i+1), i = 0 .. n-1) end do; # yields the antidiagonals in triangular form
W := proc (n, m) if `mod`(n, 2) = 0 then (1/2)*n*((1/4)*n^2+2*m^2*n+(1/4)*m^2*n^2+2*m*n+(1/2)*m*n^2-2*m) else (1/8)*(n^2-1+m^2*n^2+8*m^2*n-m^2+2*m*n^2+8*m*n-10*m)*n end if end proc: for n to 10 do seq(W(n, m), m = 1 .. 10) end do; # yields the first 10 entries of each of rows 1, 2, ..., 10.
P := proc (n, m) if `mod`(n, 2) = 0 then sort(expand(n*(m*t+(1/2)*m*(m-1)*t^2)+n*(sum(t^j, j = 1 .. (1/2)*n-1))*(1+m*t)^2+(1/2)*n*t^((1/2)*n)*(1+m*t)^2)) else sort(expand(n*(m*t+(1/2)*m*(m-1)*t^2)+n*(sum(t^j, j = 1 .. (1/2)*n-1/2))*(1+m*t)^2)) end if end proc: P(4, 9);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 26 2011
STATUS
approved