login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191975 Lowest common multiple of all p-1, where prime p divides the n-th primary pseudoperfect number A054377(n). 1
1, 2, 6, 42, 330, 235290, 310800, 1863851053628494074457830 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is a factor of any exponent k > 0 such that 1^k + 2^k + ... + p^k == 1 (mod p), where p = A054377(n).

REFERENCES

J. Sondow and K. MacMillan, Reducing the Erdos-Moser equation 1^n + 2^n + ... + k^n = (k+1)^n modulo k and k^2, Integers 11 (2011), #A34.

LINKS

Table of n, a(n) for n=1..8.

J. Sondow and K. MacMillan, Reducing the Erdos-Moser equation 1^n + 2^n + ... + k^n = (k+1)^n modulo k and k^2

FORMULA

a(n) = LCM(p-1 : prime p | A054377(n)).

EXAMPLE

A054377(3) = 42 = 2*3*7, so a(3) = LCM(2-1,3-1,7-1) = LCM(1,2,6) = 6.

CROSSREFS

Cf. A054377.

Sequence in context: A127071 A151333 A190626 * A074015 A074021 A050862

Adjacent sequences:  A191972 A191973 A191974 * A191976 A191977 A191978

KEYWORD

nonn

AUTHOR

Kieren MacMillan, Jun 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 2 13:10 EDT 2014. Contains 246357 sequences.