login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191928 Array read by antidiagonals: T(m,n) = floor(m/2)*floor((m-1)/2)*floor(n/2)*floor((n-1)/2). 2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 6, 8, 8, 6, 0, 0, 0, 0, 0, 0, 9, 12, 16, 12, 9, 0, 0, 0, 0, 0, 0, 12, 18, 24, 24, 18, 12, 0, 0, 0, 0, 0, 0, 16, 24, 36, 36, 36, 24, 16, 0, 0, 0, 0, 0, 0, 20, 32, 48, 54, 54, 48, 32, 20, 0, 0, 0, 0, 0, 0, 25, 40, 64, 72, 81, 72, 64, 40, 25, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,32

COMMENTS

T(m,n) is conjectured to be the crossing number of the complete bipartite graph K_{m,n}.

LINKS

Table of n, a(n) for n=0..119.

D. McQuillan and R. B. Richter, A parity theorem for drawings of complete and bipartite graphs, Amer. Math. Monthly, 117 (2010), 267-273.

FORMULA

T(m,n) = A002620(m-1)*A002620(n-1). - Michel Marcus, Sep 30 2017

EXAMPLE

Array begins:

0, 0, 0, 0, 0, 0, 0, 0, 0, ...

0, 0, 0, 0, 0, 0, 0, 0, 0, ...

0, 0, 0, 0, 0, 0, 0, 0, 0, ...

0, 0, 0, 1, 2, 4, 6, 9, 12, ...

0, 0, 0, 2, 4, 8, 12, 18, 24, ...

0, 0, 0, 4, 8, 16, 24, 36, 48, ...

0, 0, 0, 6, 12, 24, 36, 54, 72, ...

0, 0, 0, 9, 18, 36, 54, 81, 108, ...

0, 0, 0, 12, 24, 48, 72, 108, 144, ...

MAPLE

K:=(m, n)->floor(m/2)*floor((m-1)/2)*floor(n/2)*floor((n-1)/2);

PROG

(PARI) T(n, k) = ((n-1)^2\4)*((k-1)^2\4);

tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print()); \\ Michel Marcus, Sep 30 2017

CROSSREFS

Cf. A000241, A002620.

Sequence in context: A240066 A240067 A300717 * A033148 A281084 A186230

Adjacent sequences:  A191925 A191926 A191927 * A191929 A191930 A191931

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, Jun 19 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 17:24 EDT 2019. Contains 328037 sequences. (Running on oeis4.)