login
A191885
Ordered sequence of nonnegative differences 5*f-g, where f and g are positive Fibonacci numbers (A000045).
4
0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15, 19, 21, 23, 24, 30, 34, 36, 37, 38, 39, 49, 55, 59, 60, 61, 63, 79, 89, 95, 97, 99, 101, 102, 103, 128, 144, 154, 157, 160, 164, 165, 166, 168, 207, 233, 249, 254, 259, 265, 267, 269, 271, 273, 335, 377, 403, 411, 419
OFFSET
1,3
LINKS
MATHEMATICA
c = 2; d = 5; f[n_] := Fibonacci[n];
g[n_] := c*f[n]; h[n_] := d*f[n];
t[i_, j_] := h[i] + g[j];
u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];
v = Union[Flatten[u ]] (* A191883 *)
t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]
u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];
v1 = Union[Flatten[u1 ]] (* A191884: c*f(i)-d*f(j) *)
g1[n_] := d*f[n]; h1[n_] := c*f[n];
t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]
u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];
v2 = Union[Flatten[u2 ]] (* A191885: d*f(i)-c*f(j) *)
v3 = Union[v1, v2] (* A191886 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 18 2011
STATUS
approved