login
A191883
Ordered sums 2*f+5*g, where f and g are Fibonacci numbers (A000045).
6
7, 9, 11, 12, 14, 15, 16, 17, 19, 20, 21, 25, 26, 27, 29, 31, 35, 36, 41, 42, 44, 46, 47, 50, 51, 52, 56, 57, 66, 67, 69, 71, 73, 75, 78, 81, 82, 83, 91, 93, 107, 108, 109, 111, 115, 120, 121, 125, 131, 133, 135, 147, 150, 172, 173, 174, 175, 176, 180, 183
OFFSET
1,1
LINKS
MATHEMATICA
c = 2; d = 5; f[n_] := Fibonacci[n];
g[n_] := c*f[n]; h[n_] := d*f[n];
t[i_, j_] := h[i] + g[j];
u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];
v = Union[Flatten[u ]] (* A191883 *)
t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]
u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];
v1 = Union[Flatten[u1 ]] (* A191884: c*f(i)-d*f(j) *)
g1[n_] := d*f[n]; h1[n_] := c*f[n];
t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]
u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];
v2 = Union[Flatten[u2 ]] (* A191885: d*f(i)-c*f(j) *)
v3 = Union[v1, v2] (* A191886*)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 18 2011
STATUS
approved