login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191875 Ordered sums 3*f+4*g, where f and g are Fibonacci numbers (A000045). 4
7, 10, 11, 13, 14, 15, 17, 18, 19, 21, 23, 26, 27, 28, 29, 32, 35, 36, 38, 41, 43, 44, 47, 51, 55, 56, 58, 59, 61, 67, 71, 75, 76, 83, 87, 90, 91, 93, 95, 99, 106, 108, 110, 114, 115, 122, 123, 134, 139, 142, 145, 147, 151, 154, 160, 169, 173, 175, 177, 185 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..60.

MATHEMATICA

c = 3; d = 4; f[n_] := Fibonacci[n];

g[n_] := c*f[n]; h[n_] := d*f[n];

t[i_, j_] := h[i] + g[j];

u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];

v = Union[Flatten[u ]]    (* A191875 *)

t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]

u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];

v1 = Union[Flatten[u1 ]]  (* A191876: c*f(i)-d*f(j) *)

g1[n_] := d*f[n]; h1[n_] := c*f[n];

t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]

u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];

v2 = Union[Flatten[u2 ]]  (* A191877: d*f(i)-c*f(j) *)

v3 = Union[v1, v2]        (* A191878*)

Union[3*First[#]+4*Last[#]&/@Tuples[Fibonacci[Range[10]], 2]] (* Harvey P. Dale, Jun 05 2014 *)

CROSSREFS

Cf. A191876, A191877, A191878.

Sequence in context: A278738 A060228 A190231 * A194418 A094764 A066468

Adjacent sequences:  A191872 A191873 A191874 * A191876 A191877 A191878

KEYWORD

nonn

AUTHOR

Clark Kimberling, Jun 18 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 23 21:51 EST 2020. Contains 338603 sequences. (Running on oeis4.)