login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191854 First factor in happy factorization of n-th rectangular number. 7
1, 1, 2, 1, 3, 1, 7, 1, 2, 4, 3, 2, 1, 7, 1, 5, 11, 17, 1, 2, 3, 1, 6, 11, 5, 23, 1, 4, 1, 2, 11, 7, 3, 1, 15, 1, 31, 1, 2, 4, 23, 5, 8, 1, 1, 19, 7, 26, 1, 3, 1, 2, 1, 9, 23, 3, 47, 19, 1, 49, 1, 2, 5, 1, 27, 1, 10, 3, 7, 1, 2, 4, 9, 2, 1, 31, 1, 14, 3, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

a(n) = A007966(A007969(n)) = A007969(n) / A191855(n);

(a(n), A191855(n)) is a 1-happy couple;

notation: B in the Conway link.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..200

J. H. Conway, On Happy Factorizations, J. Integer Sequences, Vol. 1, 1998, #1.

MATHEMATICA

r[b_, c_] := (red = Reduce[x>0 && y>0 && b*x^2 + 1 == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, First[red], red]); f[128] = {}(* to speed up *); f[n_] := f[n] = If[IntegerQ[Sqrt[n]], {}, Do[c = n/b; If[(r0 = r[b, c]) =!= False, {x0, y0} = {x, y} /. ToRules[r0]; Return[{b, c, x0, y0}]], {b, Divisors[n] // Most}]]; A191854 = Reap[Table[Print[n, " ", f[n]]; If[f[n] != {} && f[n] =!= Null, Sow[f[n][[1]]]], {n, 1, 130}]][[2, 1]] (* Jean-Fran├žois Alcover, Sep 18 2015 *)

PROG

(Haskell)

a191854 = a007966 . a007969  -- Reinhard Zumkeller, Oct 11 2015

CROSSREFS

Cf. A007966, A007969, A191855.

Sequence in context: A205858 A053222 A262598 * A129646 A165401 A213074

Adjacent sequences:  A191851 A191852 A191853 * A191855 A191856 A191857

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Jun 18 2011

EXTENSIONS

Wrong formula removed, thanks to Wolfdieter Lang, who pointed this out. Reinhard Zumkeller, Oct 11 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 28 00:50 EDT 2016. Contains 275124 sequences.