

A191782


Sum of the lengths of the first ascents in all nlength left factors of Dyck paths.


1



1, 3, 6, 13, 24, 49, 90, 181, 335, 671, 1253, 2507, 4718, 9437, 17874, 35749, 68067, 136135, 260337, 520675, 999361, 1998723, 3848221, 7696443, 14857999, 29715999, 57500459, 115000919, 222981434, 445962869, 866262914, 1732525829, 3370764539, 6741529079, 13135064249
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n)=Sum(k*A191781(n,k), k>=0).


LINKS

Table of n, a(n) for n=1..35.


FORMULA

G.f.: g(z) = z*c*(1+z*c^2)/((1z)*(1z*c)), where c = (1sqrt(1  4*z^2))/(2*z^2).
a(n) ~ 3*2^(n+1/2)/sqrt(Pi*n).  Vaclav Kotesovec, Mar 21 2014


EXAMPLE

a(4)=13 because in UDUD, UDUU, UUDD, UUDU, UUUD, and UUUU the sum of the lengths of the first ascents is 1 + 1 + 2 + 2 + 3 + 4 = 13.


MAPLE

c := ((1sqrt(14*z^2))*1/2)/z^2: g := z*c*(1+z*c^2)/((1z)*(1z*c)): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 1 .. 35);


MATHEMATICA

Rest[With[{c=(1Sqrt[14x^2])/(2x^2)}, CoefficientList[ Series[ (x c (1+x c^2))/((1x)(1x c)), {x, 0, 40}], x]]] (* Harvey P. Dale, Jun 19 2011 *)


CROSSREFS

A191781.
Sequence in context: A225198 A225199 A000219 * A027999 A005196 A032287
Adjacent sequences: A191779 A191780 A191781 * A191783 A191784 A191785


KEYWORD

nonn


AUTHOR

Emeric Deutsch, Jun 18 2011


STATUS

approved



