The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191757 Number of n-step four-sided prudent self-avoiding walks ending on the top side of their box. 3
 1, 3, 7, 19, 49, 129, 333, 865, 2233, 5763, 14825, 38087, 97641, 249961, 638861, 1630681, 4156737, 10583483, 26916167, 68383509, 173565889, 440133159, 1115145081, 2823128197, 7141682287, 18053470305, 45606579731, 115137581735, 290498368253 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..100 Mireille Bousquet-Mélou, Families of prudent self-avoiding walks, DMTCS proc. AJ, 2008, 167-180. Enrica Duchi, On some classes of prudent walks, in: FPSAC'05, Taormina, Italy, 2005. EXAMPLE a(3) = 19: EEE, EEN, ENE, ENN, ENW, NEE, NEN, NNE, NNN, NNW, NWN, NWW, WNE, WNN, WNW, WWN, WWW, SEN, SWN. MAPLE b:= proc(d, i, n, x, y, w, s)       if wn, 0, `if`(n=0, `if`(y=0, 1, 0),          `if`(d in [0, 1] or d<>3 and (x=0 or i),               b(1, evalb(x=0), n-1, max(x-1, 0), y, w+1, s), 0) +          `if`(d in [0, 2] or d<>4 and (y=0 or i),               b(2, evalb(y=0), n-1, x, max(y-1, 0), w, s+1), 0) +          `if`(d in [0, 3] or d<>1 and (w=0 or i),               b(3, evalb(w=0), n-1, x+1, y, max(w-1, 0), s), 0) +          `if`(d in [0, 4] or d<>2 and (s=0 or i),               b(4, evalb(s=0), n-1, x, y+1, w, max(s-1, 0)), 0)))       fi     end: a:= n-> b(0, false, n, 0, 0, 0, 0): seq(a(n), n=0..30); MATHEMATICA b[d_, i_, n_, x_, y_, w_, s_] := b[d, i, n, x, y, w, s] = If[w < x,  b[{3, 2, 1, 4}[[d]], i, n, w, y, x, s], b[d, i, n, x, y, w, s] = If[y > n, 0, If[n == 0, If[y == 0, 1, 0], If[MemberQ[{0, 1}, d] || d != 3 && (x == 0 || i), b[1, x == 0, n - 1, Max[x - 1, 0], y, w + 1, s], 0] + If[MemberQ[{0, 2}, d] || d != 4 && (y == 0 || i), b[2, y == 0, n - 1, x, Max[y - 1, 0], w, s + 1], 0] + If[MemberQ[{0, 3}, d] || d != 1 && (w == 0 || i), b[3, w == 0, n - 1, x + 1, y, Max[w - 1, 0], s], 0] + If[MemberQ[{0, 4}, d] || d != 2 && (s == 0 || i), b[4, s == 0, n - 1, x, y + 1, w, Max[s - 1, 0]], 0]]]]; a[n_] :=  b[0, False, n, 0, 0, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 23 2017, translated from Maple *) CROSSREFS Cf. A191756, A191758. Sequence in context: A073063 A007288 A191824 * A061646 A017926 A017927 Adjacent sequences:  A191754 A191755 A191756 * A191758 A191759 A191760 KEYWORD nonn,walk AUTHOR Alois P. Heinz, Jun 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 10:12 EST 2020. Contains 338679 sequences. (Running on oeis4.)