login
A191751
Least k such that (2^n-1)*2^n - k is a prime number.
2
0, 1, 3, 1, 1, 5, 3, 11, 1, 1, 25, 29, 3, 13, 3, 7, 39, 1, 13, 23, 3, 5, 69, 11, 39, 13, 15, 31, 99, 83, 117, 31, 9, 11, 25, 67, 45, 1, 39, 47, 45, 71, 69, 77, 1, 131, 67, 101, 55, 1, 9, 41, 13, 43, 33, 233, 1, 113, 7, 29, 45, 55, 99, 41, 261, 5, 15, 343, 9
OFFSET
1,3
LINKS
Jinyuan Wang, Table of n, a(n) for n = 1..1500 (terms 1..500 from Nathaniel Johnston)
EXAMPLE
a(1)=0 because (2^1-1)*2^1 - 0 = 2 is prime,
a(2)=1 because (2^2-1)*2^2 - 1 = 11 is prime,
a(3)=3 because (2^3-1)*2^3 - 3 = 53 is prime,
a(4)=1 because (2^4-1)*2^4 - 1 = 239 is prime,
a(5)=1 because (2^5-1)*2^5 - 1 = 991 is prime,
a(6)-5 because (2^6-1)*2^6 - 5 = 4027 is prime.
MAPLE
a := proc(n) local k: for k from 0 do if(isprime((2^n-1)*2^n-k))then return k: fi: od: end: seq(a(n), n=1..69); # Nathaniel Johnston, Jun 14 2011
MATHEMATICA
lk[n_]:=Module[{c=2^n, k=0}, While[!PrimeQ[c(c-1)-k], k++]; k]; Array[lk, 70] (* Harvey P. Dale, Jul 02 2018 *)
PROG
(PARI) a(n) = my(x=(2^n-1)*2^n); x - precprime(x); \\ Michel Marcus, Feb 21 2019
CROSSREFS
Cf. A020522 ((2^n-1)*2^n).
Sequence in context: A134836 A180955 A349182 * A285409 A208510 A131767
KEYWORD
nonn
AUTHOR
Juri-Stepan Gerasimov, Jun 14 2011, Jun 15 2011
STATUS
approved