OFFSET
1,2
COMMENTS
For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
...
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
...
...
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..5050
EXAMPLE
Northwest corner:
1....5....15...40...101
2....6....16...41...105
3....10...26...66...166
4....11...30...76...191
7....20...51...130..326
8....21...55...140..351
MATHEMATICA
(* Program generates the dispersion array t of the increasing sequence f[n] *)
r = 40; r1 = 12; c = 40; c1 = 12;
a=5; b=6; m[n_]:=If[Mod[n, 2]==0, 1, 0];
f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2]
Table[f[n], {n, 1, 30}] (* A008851 *)
mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
rows = {NestList[f, 1, c]};
Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
t[i_, j_] := rows[[i, j]];
TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
(* A191722 *)
Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191722 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jun 13 2011
STATUS
approved