login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191714 a(n,k) equals the number of semistandard Young tableaux with shape of a partition of n and maximal element <= k. 6
1, 1, 4, 1, 6, 19, 1, 9, 39, 116, 1, 12, 69, 260, 751, 1, 16, 119, 560, 1955, 5552, 1, 20, 189, 1100, 4615, 15372, 43219, 1, 25, 294, 2090, 10460, 40677, 131131, 366088, 1, 30, 434, 3740, 22220, 100562, 370909, 1168008, 3245311, 1, 36, 630, 6512, 45628, 239316, 1007083, 3570240, 11042199, 30569012, 1, 42, 882, 10868, 89420, 541926, 2596573, 10347864, 35587071, 108535130, 299662672, 1, 49, 1218, 17732, 170340, 1188341, 6466159, 28915056, 110426979, 370661885, 1117689232, 3079276708 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Maximal element can be any integer, but is chosen here to be <=n.

LINKS

Alois P. Heinz, Rows n = 1..44, flattened

R. Stanley, Hook Lengths and Contents

EXAMPLE

For n=3 and k=2 the SSYT are

par= {3}     SSYT= {{1, 1, 1}}, {{2, 1, 1}}, {{2, 2, 1}}, {{2, 2, 2}}

par= {2,1}   SSYT= {{2, 1}, {1}}, {{2, 2}, {1}}

par= {1,1,1} SSYT= none

counts 4+2+0 = 6 = a(3,2).

Table begins:

1;

1,  4;

1,  6,  19;

1,  9,  39,  116;

1, 12,  69,  260,  751;

1, 16, 119,  560, 1955,  5552;

1, 20, 189, 1100, 4615, 15372, 43219; ...

MATHEMATICA

Needs["Combinatorica`"];

hooklength[(p_)?PartitionQ] := Block[{ferr = (PadLeft[1 + 0*Range[#1], Max[p]] &) /@ p}, DeleteCases[(Rest[FoldList[Plus, 0, #1]] &) /@ ferr + Reverse /@ Reverse[Transpose[(Rest[FoldList[Plus, 0, #1]] &) /@ Reverse[Reverse /@ Transpose[ferr]]]], 0, -1] - 1];

content[(p_)?PartitionQ]:= Block[{le= Max[p], ferr =(PadLeft[1+ 0*Range[#1], Max[p]]&) /@ p}, DeleteCases[ MapIndexed[-le+ Range[le, 1, -1]- #1- Tr[#2]&, 0*ferr]*ferr, 0, -1]+ le];

stanley[(p_)?PartitionQ, t_Integer] := Times @@ ((t + Flatten[content[p]])/Flatten[hooklength[p]]);

Table[Tr[ stanley[#, k]  &/@ Partitions[n] ] , {n, 12}, {k, n}]

CROSSREFS

Cf. A102539, A210391.

Sequence in context: A056140 A225419 A140895 * A126150 A291056 A248831

Adjacent sequences:  A191711 A191712 A191713 * A191715 A191716 A191717

KEYWORD

nonn,tabl

AUTHOR

Wouter Meeussen, Jun 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 00:42 EST 2017. Contains 294957 sequences.