This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191597 Expansion of x*(1+3*x)/ ( (1-4*x)*(1+x+x^2)). 2
 0, 1, 6, 21, 85, 342, 1365, 5461, 21846, 87381, 349525, 1398102, 5592405, 22369621, 89478486, 357913941, 1431655765, 5726623062, 22906492245, 91625968981, 366503875926, 1466015503701, 5864062014805, 23456248059222, 93824992236885, 375299968947541 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) and successive differences define a square array T(0,k) = a(k), T(n,k) = T(n-1,k+1) - T(n-1,k): 0,  1,  6,  21,  85,  342,... 1,  5, 15,  64, 257, 1023,... 4, 10, 49, 193, 766, 3073,... As with any sequence which obeys a homogeneous linear recurrence (we say it once, only once and we shall not repeat it), the recurrence is also valid for the rows of such arrays of higher order differences. LINKS Index entries for linear recurrences with constant coefficients, signature (3,3,4). FORMULA a(n) = 3*a(n-1) + 3*a(n-2) + 4*a(n-3), n >= 3. a(n) = A024495(2*n). a(n) = A113405(2*n) + A113405(2*n+1). a(n+1) - 4*a(n) = A132677(n). a(n+3) - a(n) = 21*4^n. a(n) = A178872(n) + 3*A178872(n-1) = (4^n-A061347(n+1))/3. - R. J. Mathar, Jun 08 2011 a(n) = 1/3*4^n - 1/6*((-1/2-(1/2*i)*sqrt(3))^n + (-1/2 +(1/2*i)*sqrt(3))^n) + (1/6*i)*sqrt(3)*((-1/2+(1/2*I)*sqrt(3))^n - (-1/2-(1/2*i)*sqrt(3))^n), with n >= 0 and i = sqrt(-1). - Paolo P. Lava, Jul 01 2011 MAPLE A061347 := proc(n) op(1+(n mod 3), [-2, 1, 1]) ; end proc: A191597 := proc(n) (4^n-A061347(n+1))/3 ; end proc: seq(A191597(n), n=0..30) ; # R. J. Mathar, Jun 08 2011 PROG (PARI) a(n)=([0, 1, 0; 0, 0, 1; 4, 3, 3]^n*[0; 1; 6])[1, 1] \\ Charles R Greathouse IV, Jul 06 2017 CROSSREFS Sequence in context: A320649 A219596 A182251 * A088556 A316105 A137966 Adjacent sequences:  A191594 A191595 A191596 * A191598 A191599 A191600 KEYWORD nonn,easy AUTHOR Paul Curtz, Jun 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 18:31 EDT 2019. Contains 328319 sequences. (Running on oeis4.)