login
Binomial row sums of the Riordan matrix (1/(1-x),x/(1-x^2)) (A046854).
1

%I #13 Aug 31 2017 13:43:47

%S 1,2,4,11,32,92,271,814,2464,7508,23024,70952,219503,681358,2121116,

%T 6619571,20703040,64873328,203625604,640109128,2014951552,6350490808,

%U 20037015200,63284778256,200063948527,633007850942,2004431426716,6351693835169,20141013776384

%N Binomial row sums of the Riordan matrix (1/(1-x),x/(1-x^2)) (A046854).

%H Vincenzo Librandi, <a href="/A191586/b191586.txt">Table of n, a(n) for n = 0..198</a>

%F a(n) = Sum_{k=0..n} binomial(n,k)*binomial(floor((n+k)/2),k).

%F (8*n^2+88*n+240)*a(n+6) - (72*n^2+636*n+1380)*a(n+5) + (180*n^2+1300*n+2232)*a(n+4) - (180*n^2+1170*n+1842)*a(n+3) + (326*n^2+2074*n+3164)*a(n+2) - (228*n^2+948*n+984)*a(n+1) + (35*n^2+105*n+70)*a(n) = 0. - _Emanuele Munarini_, Aug 31 2017

%t Table[Sum[Binomial[n, k]Binomial[Floor[(n+k)/2],k],{k,0,n}],{n,0,100}]

%o (Maxima) makelist(sum(binomial(n,k)*binomial(floor((n+k)/2),k),k,0,n),n,0,12);

%Y Cf. A046854.

%K nonn,easy

%O 0,2

%A _Emanuele Munarini_, Jun 07 2011