login
A191577
Expansion of (x*exp(x)/(exp(x)-1))^3 = sum(n>=0, a(n)/(n!*(n+1)!)*x^n)
0
1, 3, 12, 54, 228, 540, -3840, -50400, 229824, 11430720, -10886400, -5388768000, -24417676800, 4733158510080, 58758168268800, -7139902049280000, -165279578720256000, 17368039270213632000, 645434329747208601600, -64796782524129976320000, -3555479864273411063808000
OFFSET
0,2
FORMULA
a(n)=6*(-1)^n*sum(k=1..n, (stirling1(k+3,3)*stirling2(n,k))/((k+1)*(k+2)*(k+3))), a(n)>0, a(0)=1.
The above is the special case m=3 of (x*exp(x)/(exp(x)-1))^m = 1+sum(n>=1, ((-1)^n*sum(k=1..n, (stirling1(m+k,m)*stirling2(n,k))/binomial(m+k,k)))*x^n/n!)
PROG
(Maxima)
a(n):=6*(-1)^n*sum((stirling1(k+3, 3)*stirling2(n, k))/((k+1)*(k+2)*(k+3)), k, 1, n);
CROSSREFS
Sequence in context: A124810 A370821 A329056 * A282901 A123348 A151204
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 07 2011
STATUS
approved