login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191532 Triangle T(n,k) read by rows: T(n,n) = 2n+1, T(n,k)=k for k<n. 0
1, 0, 3, 0, 1, 5, 0, 1, 2, 7, 0, 1, 2, 3, 9, 0, 1, 2, 3, 4, 11, 0, 1, 2, 3, 4, 5, 13, 0, 1, 2, 3, 4, 5, 6, 15, 0, 1, 2, 3, 4, 5, 6, 7, 17, 0, 1, 2, 3, 4, 5, 6, 7, 8, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 21, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 25, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

We can build products of linear polynomials with these T(n,k) defining the absolute terms:

1+n = A000027(1+n)                               =2,  3,  4,   5,   6,   7,

n*(3+n)/2 = A000096(1+n)                         =2,  5,  9,  14,  20,  27,

n*(1+n)*(5+n)/6 = A005581(2+n)                   =2,  7, 16,  30,  50,  77,

n*(1+n)*(2+n)*(7+n)/24 = A005582(1+n)            =2,  9, 25,  55, 105, 182,

n*(1+n)*(2+n)*(3+n)*(9+n)/120 = A005583(n)       =2, 11, 36,  91, 196, 378,

n*(1+n)*(2+n)*(3+n)*(4+n)*(11+n)/720 = A005584(n)=2, 13, 49, 140, 336, 714,

LINKS

Table of n, a(n) for n=0..104.

FORMULA

T(n,k) = A002262(n-1,k).

sum_{k=0..n} T(n,k) = A000217(1+n).

EXAMPLE

1;

0,3;

0,1,5;

0,1,2,7;

0,1,2,3,9;

0,1,2,3,4,11;

CROSSREFS

Cf. A191302.

Sequence in context: A208981 A261158 A207543 * A179552 A119879 A115714

Adjacent sequences:  A191529 A191530 A191531 * A191533 A191534 A191535

KEYWORD

nonn,easy,tabl

AUTHOR

Paul Curtz, Jun 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 02:07 EST 2016. Contains 278902 sequences.