%I
%S 0,1,1,2,2,2,2,2,2,2,3,3,3,2,3,3,3,3,3,3,2,3,4,2,3,3,4,3,3,2,4,2,3,3,
%T 4,4,4,3,4,3,4,4,3,3,3,3,5,3,3,3,4,4,4,2,5,4,3,3,4,4,2,4,5,3,3,4,3,3,
%U 4,4,5,4,4,3,5,3,4,3,5,4,3,3,5,3,4,3,4,5,4,3,4,2,3,4,6,3,4,3,4,4,3,4,5,4,5,5,5,3,3,4,6,4,5,3,4,4,3,3,5
%N Maximum edgedegree in the rooted tree with MatulaGoebel number n.
%C The degree of an edge is the number of edges adjacent to it.
%C The MatulaGoebel number of a rooted tree can be defined in the following recursive manner: to the onevertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the tth prime number, where t is the MatulaGoebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the MatulaGoebel numbers of the m branches of T.
%D A. T. Balaban, Chemical graphs, Theoret. Chim. Acta (Berl.) 53, 355375, 1979. F. Goebel, On a 11correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141143.
%D I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131142.
%D I. Gutman and YeongNan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 1722.
%D D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
%D R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, WileyVCH, 2000.
%H E. Deutsch, <a href="http://arxiv.org/abs/1111.4288">Rooted tree statistics from Matula numbers</a>, arXiv:1111.4288
%H <a href="/index/Mat#matula">Index entries for sequences related to MatulaGoebel numbers</a>
%F In A191516 one finds the generating polynomial f(n)=F(n,x) of the edges of the rooted tree with MatulaGoebel number n, with respect to edgedegree. a(n)=degree of this polynomial.
%e a(7)=2 because the rooted tree with MatulaGoebel number 7 is Y; all edges have degree 2.
%p with(numtheory): f := proc (n) local r, s, g, h: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: g := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then x^bigomega(pi(n)) else x^bigomega(s(n))*g(r(n))+x^bigomega(r(n))*g(s(n)) end if end proc: h := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then x*g(pi(n))+h(pi(n)) else h(r(n))+h(s(n)) end if end proc: sort(expand(g(n)+h(n))) end proc: seq(degree(f(n)), n = 2 .. 120);
%Y A191516
%K nonn
%O 2,4
%A _Emeric Deutsch_, Dec 15 2011
