This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191509 E.g.f. exp(x*sqrt(1+sin(x)^2)). 2
 1, 1, 1, 4, 13, -4, -59, 848, 1625, -57968, -82679, 5307072, 3378277, -761466432, -178851763, 155538255616, 13323839409, -43026868334336, -1145167641071, 15502018794828800, 110592144624061, -7038075176027079680, -12523284027203883, 3925127762389637074944, 1643266949074714633, -2635567108489125092225024 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n)=2*sum(j=1..(n-1)/2, binomial(n,n-2*j)*sum(k=0..j, 4^(j-k)*binomial((n-2*j)/2,k)*sum(i=0..k-1, (i-k)^(2*j)*binomial(2*k,i)*(-1)^(j+k-i))))+1. If n is odd, then a(n) ~ -sin(Pi*n/2) * 2^(5/4) * log(1+sqrt(2))^(3/2-n) * n^(n-1) / exp(n). If n is even, then limit n->infinity (|a(n)| / (n! * exp(w*cosh(w)) / w^n))^(1/n) = 1, where w = 2*LambertW(sqrt(n/2)). - Vaclav Kotesovec, Aug 05 2014 MATHEMATICA CoefficientList[Series[E^(x*Sqrt[1+Sin[x]^2]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *) PROG (Maxima) a(n):=2*sum(binomial(n, n-2*j)*sum(4^(j-k)*binomial((n-2*j)/2, k)*sum((i-k)^(2*j)*binomial(2*k, i)*(-1)^(j+k-i), i, 0, k-1), k, 0, j), j, 1, (n-1)/2)+1; CROSSREFS Cf. A003727. Sequence in context: A130650 A170865 A320030 * A218356 A249120 A170844 Adjacent sequences:  A191506 A191507 A191508 * A191510 A191511 A191512 KEYWORD sign AUTHOR Vladimir Kruchinin, Jun 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 09:58 EST 2019. Contains 329968 sequences. (Running on oeis4.)