login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191471 E.g.f. (1+arctan(x))^arctan(x) 0
1, 0, 2, -3, 4, -30, 162, -252, 400, -27912, 200744, 705672, -4202296, -223340208, 1418238416, 29398266888, -114981277184, -8193860510784, 30889433635776, 2261786651427072, -3830504174333824 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..20.

FORMULA

a(n)=sum(m=1..n, sum(j=0..(n-m)/2, (2^(2*j-n)*(n-2*j)!*stirling1(n-m-2*j,m)*(-1)^j*sum(i=0..2*j, (2^(i+n-2*j)*stirling1(i+n-2*j,n-2*j)*binomial(n-1,i+n-2*j-1))/(i+n-2*j)!))/(n-m-2*j)!));

MATHEMATICA

With[{nn=30}, CoefficientList[Series[(1+ArcTan[x])^ArcTan[x], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Nov 01 2011 *)

PROG

(Maxima)

a(n):=sum(sum((2^(2*j-n)*(n-2*j)!*stirling1(n-m-2*j, m)*(-1)^j*sum((2^(i+n-2*j)*stirling1(i+n-2*j, n-2*j)*binomial(n-1, i+n-2*j-1))/(i+n-2*j)!, i, 0, 2*j))/(n-m-2*j)!, j, 0, (n-m)/2), m, 1, n);

CROSSREFS

Sequence in context: A024633 A064858 A007114 * A064889 A057917 A250189

Adjacent sequences:  A191468 A191469 A191470 * A191472 A191473 A191474

KEYWORD

sign

AUTHOR

Vladimir Kruchinin, Jun 03 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 11:34 EST 2016. Contains 279001 sequences.