OFFSET
0,3
COMMENTS
FORMULA
G.f.: G(t,z) = 2/(1-z-2*z^3-t*z+2*t*z^3+(1-z+t*z)*sqrt(1-4*z^2)).
EXAMPLE
T(6,1)=2 because we have HU(DHU)D and U(DHU)DH, where U=(1,1), D=(1,-1), H=(1,0) (the DHU's are shown between parentheses).
Triangle starts:
1;
1;
2;
3;
6;
9, 1;
18, 2;
28, 7;
56, 14;
MAPLE
G := 2/(1-z-2*z^3-t*z+2*t*z^3+(1-z+t*z)*sqrt(1-4*z^2)): Gser := simplify(series(G, z = 0, 25)): for n from 0 to 21 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 21 do seq(coeff(P[n], t, k), k = 0 .. floor((1/5)*n)) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 04 2011
STATUS
approved