

A191392


Triangle read by rows: T(n,k) is the number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0)steps at positive heights) having k base pyramids. A base pyramid is a factor of the form U^j D^j (j > 0), starting at the horizontal axis. Here U = (1,1) and D = (1,1).


3



1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 6, 3, 2, 9, 8, 1, 3, 12, 16, 4, 8, 18, 30, 13, 1, 13, 26, 50, 32, 5, 31, 47, 83, 71, 19, 1, 49, 80, 132, 140, 55, 6, 109, 162, 223, 263, 140, 26, 1, 170, 292, 377, 468, 316, 86, 7, 371, 592, 693, 830, 665, 246, 34, 1, 581, 1064, 1264, 1456, 1314, 622, 126, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

Row n has 1 + ceiling(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
T(n,0) = A191393(n).
Sum_{k>=0} k*T(n,k) = A191394(n).


LINKS

G. C. Greubel, Table of n, a(n) for the first 101 rows, flattened


FORMULA

G.f.: G(t,z) = (2*(1  z^2))/(1  2*z + z^2 + 2*z^3  2*t*z^2 + (1  z^2)*sqrt(1  4*z^2)).


EXAMPLE

T(5,2)=3 because we have H(UD)(UD), (UD)H(UD), and (UD)(UD)H, where U=(1,1), D=(1,1), H=(1,0) (the base pyramids are shown between parentheses).
Triangle starts:
1;
1;
1, 1;
1, 2;
1, 4, 1;
1, 6, 3;
2, 9, 8, 1;
3, 12, 16, 4;
8, 18, 30, 13, 1;


MAPLE

G := (2*(1z^2))/(12*z+z^2+2*z^32*t*z^2+(1z^2)*sqrt(14*z^2)): Gser := simplify(series(G, z = 0, 18)): for n from 0 to 15 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 15 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form


MATHEMATICA

CoefficientList[CoefficientList[Series[(2*(1  z^2))/(1  2*z + z^2 + 2*z^3  2*t*z^2 + (1  z^2)*Sqrt[1  4*z^2]), {z, 0, 10}, {t, 0, 10}], z], t] // Flatten (* G. C. Greubel, Mar 29 2017 *)


CROSSREFS

Cf. A001405, A191393, A191394.
Sequence in context: A124428 A191310 A124845 * A127625 A124844 A133934
Adjacent sequences: A191389 A191390 A191391 * A191393 A191394 A191395


KEYWORD

nonn,tabf


AUTHOR

Emeric Deutsch, Jun 04 2011


STATUS

approved



