Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Feb 21 2024 08:27:57
%S 1,1,2,3,5,8,14,23,41,69,125,214,393,682,1267,2223,4171,7385,13976,
%T 24935,47544,85377,163863,295900,571216,1036471,2011130,3664548,
%U 7143068,13063637,25568085,46912433,92152906,169570215,334194418,616530391,1218694221,2253451666,4466410838
%N Number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights) with no valleys at level 0.
%H G. C. Greubel, <a href="/A191388/b191388.txt">Table of n, a(n) for n = 0..1000</a>
%H Helmut Prodinger, <a href="https://arxiv.org/abs/2402.13026">Dispersed Dyck paths revisited</a>, arXiv:2402.13026 [math.CO], 2024.
%F a(n) = A191387(n,0).
%F G.f.: (3-sqrt(1-4*z^2))/(2-3*z+z*sqrt(1-4*z^2)).
%F a(n) ~ 2^(n+5/2) * (1+(-1)^n/49) / (sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Mar 21 2014
%F a(n) = 1+Sum_{i=0..(n-1)/2}(Sum_{k=0..i}((k+1)*binomial(2*i-k,i-k)*binomial(n-2*i-1,k+1))/(i+1)). - _Vladimir Kruchinin_, Mar 27 2016
%F D-finite with recurrence -n*a(n) +3*n*a(n-1) +2*(n-6)*a(n-2) +12*(-n+3)*a(n-3) +(7*n-24)*a(n-4) +4*(n-3)*a(n-6)=0. - _R. J. Mathar_, Sep 24 2021
%e a(4)=5 because we have HHHH, HHUD, HUDH, UDHH, and UUDD, where U=(1,1), H=(1,0), and D=(1,-1) (UDUD does not qualify).
%p g := (3-sqrt(1-4*z^2))/(2-3*z+z*sqrt(1-4*z^2)): gser := series(g, z = 0, 42): seq(coeff(gser, z, n), n = 0 .. 38);
%t CoefficientList[Series[(3-Sqrt[1-4*x^2])/(2-3*x+x*Sqrt[1-4*x^2]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 21 2014 *)
%o (Maxima)
%o a(n):=1+sum(sum((k+1)*binomial(2*i-k,i-k)*binomial(n-2*i-1,k+1),k,0,i)/(i+1),i,0,(n-1)/2); /* _Vladimir Kruchinin_, Mar 27 2016 */
%o (PARI) x='x+O('x^99); Vec((3-sqrt(1-4*x^2))/(2-3*x+x*sqrt(1-4*x^2))) \\ _Altug Alkan_, Mar 27 2016
%Y Cf. A191387.
%K nonn
%O 0,3
%A _Emeric Deutsch_, Jun 02 2011