This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191388 Number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights) with no valleys at level 0. 2
 1, 1, 2, 3, 5, 8, 14, 23, 41, 69, 125, 214, 393, 682, 1267, 2223, 4171, 7385, 13976, 24935, 47544, 85377, 163863, 295900, 571216, 1036471, 2011130, 3664548, 7143068, 13063637, 25568085, 46912433, 92152906, 169570215, 334194418, 616530391, 1218694221, 2253451666, 4466410838 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = A191387(n,0). G.f.: (3-sqrt(1-4*z^2))/(2-3*z+z*sqrt(1-4*z^2)). a(n) ~ 2^(n+5/2) * (1+(-1)^n/49) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 21 2014 a(n) = 1+Sum_{i=0..(n-1)/2}(Sum_{k=0..i}((k+1)*binomial(2*i-k,i-k)*binomial(n-2*i-1,k+1))/(i+1)). - Vladimir Kruchinin, Mar 27 2016 Conjecture: n*a(n) +(-4*n+1)*a(n-1) +(n+9)*a(n-2) +2*(7*n-25)*a(n-3) +(-19*n+72)*a(n-4) +(7*n-31)*a(n-5) +4*(-n+3)*a(n-6) +4*(n-4)*a(n-7)=0. - R. J. Mathar, Jun 14 2016 EXAMPLE a(4)=5 because we have HHHH, HHUD, HUDH, UDHH, and UUDD, where U=(1,1), H=(1,0), and D=(1,-1) (UDUD does not qualify). MAPLE g := (3-sqrt(1-4*z^2))/(2-3*z+z*sqrt(1-4*z^2)): gser := series(g, z = 0, 42): seq(coeff(gser, z, n), n = 0 .. 38); MATHEMATICA CoefficientList[Series[(3-Sqrt[1-4*x^2])/(2-3*x+x*Sqrt[1-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *) PROG (Maxima) a(n):=1+sum(sum((k+1)*binomial(2*i-k, i-k)*binomial(n-2*i-1, k+1), k, 0, i)/(i+1), i, 0, (n-1)/2); /* Vladimir Kruchinin, Mar 27 2016 */ (PARI) x='x+O('x^99); Vec((3-sqrt(1-4*x^2))/(2-3*x+x*sqrt(1-4*x^2))) \\ Altug Alkan, Mar 27 2016 CROSSREFS Cf. A191387. Sequence in context: A246360 A005627 A191794 * A194850 A062692 A182024 Adjacent sequences:  A191385 A191386 A191387 * A191389 A191390 A191391 KEYWORD nonn AUTHOR Emeric Deutsch, Jun 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 12:30 EST 2019. Contains 329895 sequences. (Running on oeis4.)