Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Feb 07 2016 10:48:30
%S 2457,15561,19656,25389,39816,66339,124488,157248,203112,248976,
%T 307125,318528,420147,530712,685503,842751,995904,1075032,1257984,
%U 1624896,1791153,1945125,1991808,2457000,2548224,3173625,3270267
%N Integers n such that each of n, 2n and 3n is a sum of 2 distinct positive cubes.
%H Chai Wah Wu, <a href="/A191383/b191383.txt">Table of n, a(n) for n = 1..2605</a>
%F {n: n in A024670 and 2n in A024670 and 3n in A024670}.
%e 2457 is in the sequence because 2457 = 9^3+12^3, 2*2457 = 4914 = 1^3+17^3, 3*2457 = 7371 = 8^3+19^3 have at least one representation as a sum of two distinct positive cubes.
%p isA000578 := proc(n) option remember; local f; for f in ifactors(n)[2] do if op(2,f) mod 3 <> 0 then return false; end if; end do: true ; end proc:
%p isA024670 := proc(n) option remember ; local k,kc,k3 ; for k from 1 do k3 := k^3 ; kc := n-k^3 ; if kc <= k3 then return false; elif isA000578(kc) then return true; end if; end do: end proc:
%p isA191383 := proc(n) isA024670(n) and isA024670(2*n) and isA024670(3*n) ; end proc:
%p for n from 1 do if isA191383(n) then printf("%d,\n",n); end if; end do: # _R. J. Mathar_, Jun 03 2011
%Y Cf. A024670, A191345, A191352.
%K nonn
%O 1,1
%A _Zak Seidov_, Jun 01 2011