

A191357


Floor(A^(C^n)), where A = 32.76 and C = 1.33.


2



103, 479, 3673, 55147, 2024063, 243937297, 142915724779, 685893080269745, 53978528420922581864, 175329092084368391071206608, 80227969100540338877503013472650510, 26469961649988241699181245714190498215773679043
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

First seven terms are primes.


LINKS

Table of n, a(n) for n=1..12.
Chris Caldwell, A proof of a generalization of Mills' Theorem
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 142915724779
Carlos Rivera, Puzzle 85
Eric Weisstein's World of Mathematics, Floor Function


FORMULA

a(n) = floor(32.76^(1.33^n)).


EXAMPLE

a(2) = 479 because 32.76^(1.33^2) = 479.1724192479....


PROG

(PARI) default(realprecision, 100); for(n=1, 12, print1(floor(32.76^(1.33^n)), ", ")); \\ Arkadiusz Wesolowski, Jul 18 2011


CROSSREFS

Cf. A051254, A108739, A051021, A060449, A060699.
Sequence in context: A142635 A142771 A082883 * A237611 A077405 A023355
Adjacent sequences: A191354 A191355 A191356 * A191358 A191359 A191360


KEYWORD

nonn


AUTHOR

Arkadiusz Wesolowski, May 31 2011


STATUS

approved



