login
A191145
Increasing sequence S generated by these rules: a(1)=1, and if x is in S then both 3x+2 and 4x+3 are in S.
2
1, 5, 7, 17, 23, 31, 53, 71, 95, 127, 161, 215, 287, 383, 485, 511, 647, 863, 1151, 1457, 1535, 1943, 2047, 2591, 3455, 4373, 4607, 5831, 6143, 7775, 8191, 10367, 13121, 13823, 17495, 18431, 23327, 24575, 31103, 32767, 39365, 41471, 52487, 55295, 69983, 73727, 93311, 98303, 118097, 124415, 131071, 157463, 165887
OFFSET
1,2
COMMENTS
See A191113.
LINKS
MATHEMATICA
h = 3; i = 2; j = 4; k = 3; f = 1; g = 11;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191145 *)
b = (a - 2)/3; c = (a - 3)/4; r = Range[1, 16000];
d = Intersection[b, r] (* A191145 *)
e = Intersection[c, r] (* A191145 *)
m = (a + 1)/2 (* A025613 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a191145 n = a191145_list !! (n-1)
a191145_list = f $ singleton 1
where f s = m : (f $ insert (3*m+2) $ insert (4*m+3) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
CROSSREFS
See A191113.
Sequence in context: A359297 A283159 A283145 * A145354 A214345 A166109
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 28 2011
STATUS
approved