login
A191141
Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+2 and 4x-1 are in a.
4
1, 3, 5, 11, 17, 19, 35, 43, 53, 59, 67, 75, 107, 131, 139, 161, 171, 179, 203, 211, 227, 235, 267, 299, 323, 395, 419, 427, 485, 515, 523, 539, 555, 611, 635, 643, 683, 707, 715, 803, 811, 843, 899, 907, 939, 971, 1067, 1187, 1195, 1259, 1283, 1291, 1457, 1547, 1571, 1579, 1619, 1667, 1675, 1707, 1835, 1907, 1931, 1939, 2051
OFFSET
1,2
COMMENTS
See A191113.
LINKS
MATHEMATICA
h = 3; i = 2; j = 4; k = -1; f = 1; g = 9;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191141 *)
b = (a - 2)/3; c = (a + 1)/4; r = Range[1, 1500];
d = Intersection[b, r] (* A191206 *)
e = Intersection[c, r] (* A191207 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a191141 n = a191141_list !! (n-1)
a191141_list = f $ singleton 1
where f s = m : (f $ insert (3*m+2) $ insert (4*m-1) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
CROSSREFS
Cf. A191113.
Sequence in context: A214296 A045409 A191206 * A268155 A199217 A141165
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 28 2011
STATUS
approved