login
A191132
Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+1 and 4x-3 are in a.
3
1, 4, 13, 40, 49, 121, 148, 157, 193, 364, 445, 472, 481, 580, 589, 625, 769, 1093, 1336, 1417, 1444, 1453, 1741, 1768, 1777, 1876, 1885, 1921, 2308, 2317, 2353, 2497, 3073, 3280, 4009, 4252, 4333, 4360, 4369, 5224, 5305, 5332, 5341, 5629, 5656, 5665, 5764, 5773, 5809, 6925, 6952, 6961, 7060, 7069, 7105, 7492, 7501
OFFSET
1,2
COMMENTS
See A191113.
LINKS
MATHEMATICA
h = 3; i = 1; j = 4; k = -3; f = 1; g = 9;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191132 *)
b = (a - 1)/3; c = (a + 3)/4; r = Range[1, 2500];
d = Intersection[b, r] (* A191188 *)
e = Intersection[c, r] (* A191189 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a191132 n = a191132_list !! (n-1)
a191132_list = 1 : f (singleton 4)
where f s = m : (f $ insert (3*m+1) $ insert (4*m-3) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
CROSSREFS
Cf. A191113.
Sequence in context: A271012 A272581 A342159 * A360606 A119915 A307577
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 27 2011
STATUS
approved