login
A191128
Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x and 4x-1 are in a.
4
1, 3, 9, 11, 27, 33, 35, 43, 81, 99, 105, 107, 129, 131, 139, 171, 243, 297, 315, 321, 323, 387, 393, 395, 417, 419, 427, 513, 515, 523, 555, 683, 729, 891, 945, 963, 969, 971, 1161, 1179, 1185, 1187, 1251, 1257, 1259, 1281, 1283, 1291, 1539, 1545, 1547, 1569, 1571, 1579, 1665, 1667, 1675, 1707, 2049, 2051, 2059, 2091, 2187
OFFSET
1,2
COMMENTS
See A191113.
LINKS
MATHEMATICA
h = 3; i = 0; j = 4; k = -1; f = 1; g = 9;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191128 *)
b = a/3; c = (a + 1)/4; r = Range[1, 1500];
d = Intersection[b, r] (* A191180 *)
e = Intersection[c, r] (* A191181 *)
m = (a + 1)/2 (* divisibility property *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a191128 n = a191128_list !! (n-1)
a191128_list = f $ singleton 1
where f s = m : (f $ insert (3*m) $ insert (4*m-1) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 27 2011
STATUS
approved