The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191127 Increasing sequence generated by these rules:  a(1)=1, and if x is in a then 3x and 4x-2 are in a. 5
 1, 2, 3, 6, 9, 10, 18, 22, 27, 30, 34, 38, 54, 66, 70, 81, 86, 90, 102, 106, 114, 118, 134, 150, 162, 198, 210, 214, 243, 258, 262, 270, 278, 306, 318, 322, 342, 354, 358, 402, 406, 422, 450, 454, 470, 486, 534, 594, 598, 630, 642, 646, 729, 774, 786, 790, 810, 834, 838, 854, 918, 954, 966, 970, 1026, 1030, 1046, 1062, 1074, 1078 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A191113. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 MATHEMATICA h = 3; i = 0; j = 4; k = -2; f = 1; g = 9; a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191127 *) b = a/3; c = (a + 2)/4; r = Range[1, 1500]; d = Intersection[b, r] (* A191178 *) e = Intersection[c, r] (* A191179 *) PROG (Haskell) import Data.Set (singleton, deleteFindMin, insert) a191127 n = a191127_list !! (n-1) a191127_list = f \$ singleton 1    where f s = m : (f \$ insert (3*m) \$ insert (4*m-2) s')              where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Jun 01 2011 CROSSREFS Cf. A191119, A191178, A191179. Sequence in context: A288930 A045588 A191178 * A015898 A157217 A058958 Adjacent sequences:  A191124 A191125 A191126 * A191128 A191129 A191130 KEYWORD nonn AUTHOR Clark Kimberling, May 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 23:02 EDT 2020. Contains 336300 sequences. (Running on oeis4.)